Command-line usage ================== Examples below assume the project is installed in editable mode:: pip install -e . Train models and store artefacts under ``artefacts/``:: mlcls-train --model logreg mlcls-train --model random_forest mlcls-train --model random_forest -g # grid search mlcls-train --model gboost mlcls-train --model gboost -g # grid search mlcls-train --model svm mlcls-train --model svm -g # grid search Evaluate metrics and write ``artefacts/summary_metrics.csv``:: mlcls-eval --group-col gender Generate predictions and save them to ``predictions.csv`` (change ``--out`` to override):: mlcls-predict --model-path artefacts/logreg.joblib --data data/new.csv The commands create the output paths in the current working directory. Collect tables and figures for reporting:: mlcls-report Create a checksum manifest:: mlcls-manifest artefacts/*.csv Dataset summary --------------- Run ``mlcls-summary`` to inspect the dataset:: mlcls-summary --data-path data/raw/loan_approval_dataset.csv Example output:: Rows: 30 Columns: 6 Class balance: Y: 15 (50.0%), N: 15 (50.0%) The command gathers recent metrics and plots under ``report_artifacts/``. This folder can be zipped and shared as a summary of the run. Local testing ------------- Install the requirements before running the tests:: pip install -r requirements.txt # or: conda env create -f environment.yml